计算物理团队
发布时间:2022-06-16 15:41:35

课题组人员:

l 教师:袁宏宽 田春玲 匡安龙 王彪 巨濛 常俊丽 王鹏

研究方向:

l 主要从事极端条件下材料和原子分子研究。对氢、氦、氮等小分子物质的高温高压物性和相变进行过详细研究。

l 主要从事纳米催化剂的结构设计、电磁性质、表面吸附、沉积包裹等研究。

l 主要从事二维范德瓦尔斯异质结的电学、光学性质及光催化性能研究等。

l 主要从事新型激光晶体材料的设计和研究工作。

l 主要从事钙钛矿及二维单层材料的光电应用研究。

l 采用密度泛函理论和其他多尺度模拟方法,对纳米材料和团簇进行结构设计、电磁性质调控等研究。目前研究方向主要聚焦于金属有机材料和二维原子晶体的铁磁性、磁各向异性、磁热效应等性质的研究。

主要纵向科研项目:

1.袁宏宽.衬底负载稀土金属原子/团簇/超原子的构筑及单轴磁各向异性调控

国家自然科学基金面上项目(11874306),主持,2019.01-2022.12;

2. 袁宏宽.核壳型硬磁-软磁(反铁磁)纳米复合颗粒的结构设计与电磁性能研究

重庆市基础科学与前沿技术研究专项重点项目,主持,2017.09—2020.09;

3. 袁宏宽.交换弹性磁体的团簇模型研究,中央高校基本科研业务费重点项目(XDJK2017B020),主持,2017.01-2019.12;

4.田春玲.重庆市自然科学基金重点项目 CSTC2009BA4005):兆巴压力下流体氢的离解相变和物性研究,2009.09-2012.09,主持;

5. 田春玲.新型高能材料爆轰产物状态属性研究 2019.01-2021.12,主持;

6.王彪.二维异质结体系光催化过程中激子效应的调控因素,中国科协优秀中外青年交流计划项目,202100302021.01-2021.12,主持人;

7. 王彪.过渡金属硫化物基范德瓦尔斯异质结的光催化机制及性能调控研究,重庆市自然科学基金面上项目,2020.08-2023.07,主持人;

8. 王彪.气体放电演示平台的研究及开发,重庆市科技局科技攻关,主持人;

9.巨濛.Nd3+离子掺杂钇氧化物的结构畸变与光谱特性的理论研究,11904297,国家自然科学基金青年基金项目,2020.01-2022.12,主持人;
10.
巨濛.稀土离子双掺杂激光晶体的微观结构及能量转换过程的理论研究,重庆英才-青年拔尖人才项目,2021.01-2023.12,主持人;

11.常俊丽.西南大学博士启动基金,SWU119032 2019/12-2021/12,主持,结题;

12. 常俊丽.中央高校基本科研业务费,XDJK2018C0802018/04-2019/12,主持,结题;

13.王鹏.国家自然科学基金委员会, 青年科学基金项目, 12004315, 基于团簇和分子组装的低维金属有机磁性材料可控设计, 2021-01-01 2023-12-31, 24万元, 在研, 主持.

Research interests

Our research direction is focus on the materialsatoms and molecules under extreme conditions. The state structure, performance and phase transitions of hydrogen, nitrogen, helium,argon and other small molecular matters under high temperature and high pressure have been studied in detail. The design of high density energetic materials and the mechanism of initiation and energy release are also of interest to us.

Our team is mainly engaged in the structural design, electromagnetic properties, surface adsorption, deposition and wrapping of nano catalysts, and has achieved some research results.

Our research group is mainly engaged in the design and research of two dimensional van der Waals heterojunction of their electronic, optical, and photocatalytic properties.

Our research group is mainly engaged in the design and research of new laser crystal materials. The research group is specialized in computational physics, crystal field theory, energy level spectrum and other aspects, and has made some progress in crystal structure characteristics of rare earth ion doped system, electromagnetic structure theory of luminescent ions in crystal field and energy level radiation transition, etc.

Our research group is mainly focused on the perovskite-based functional materials for photoelectronic application, which provides theoretical insights and mechanism analyses for experimental observations.

Using Density Functional Theory and other multiscale simulation methods, our group focus on designing nanomaterials and clusters with novel electronic and magnetic properties. Our current research involves tailoring the ferromagnetism, magnetic anisotropies, and magnetocaloric effects of metal-organic materials and two-dimensional atomic crystals.


代表性论文:

1.Q. Y. Zhang, H. Cui, C. L. Tian, H. Chen, J. Z. Wang, Hong. Kuan. Yuan*, Thickness and composition dependencies of magnetization and perpendicular magnetic anisotropy of Heusler-like alloys based MnxGajCo2FeAl superlattices, J. Alloy. Compound. 773, 327 (2019)

2. Hong. Kuan. Yuan*, H. Cui, B. Liu, C. L. Tian, A. L. Kuang, H. Chen, Density functional theory calculations for magnetic properties of Co3W systems, J. Chem. Phys. 149, 014303 (2018)

3.Xiaocui Han, Hong Cui, Bo Liu, Cunling Tian, Junzhong Wang, Hong Chen, Hongkuan Yuan*, Effects of overlayer capping and lattice strain on perpendicular magnetic anisotropy of TM|FePt|MgO heterostructure, Sci. Rep. 8, 9429 (2018)

4.Hong. Kuan. Yuan, H. Cui, B. Liu,1 C. L. Tian, J. Z. Wang, A. L. Kuang, and H. Chen Magnetic moment and magnetic anisotropy of Ge3Mn5 thinfilms on Ge(111) substrate: A density functional study, J. Chem. Phys. 148, 074701 (2018)

5.J. L. Chang, H. Chen, Hong. Kuan. Yuan, B. Wang, X. R..Chen, The mixing effect of organic cations on the structural, electronic and optical properties of FA xMA1x PbI3 perovskites, Phys. Chem. Chem. Phys. 20, 941 (2018).

6. C. L. TianF. S. Liu, H. K. Yuan, H. Chen, and Y.D. Gan First-principles equation of state of liquid hydrogen and dissociative transitionJ. Phys.: Condens. Matter 33 01540 (2021)

7. C.J.KeC. L. Tian* Y.D. GanTailoring the Band Gap in Co-doped GaN Nanosheet From First Principle Calculations

Frontiers in Materials 7124 (2020)

8.C. L. Tian, F. S. Liu, H. K. Yuan, H. Chen, and A. L. Kuan ,First-order liquid-liquid phase transition in compressed hydrogen and critical point , J. Chem. Phys. 150, 204114 (2019).

9.X.X. Zhu, X. K. Luo, H. K. Yuan, H. Chen and C. L. Tian*, Band gap engineering of SnS2 nanosheets by anion–anion codoping for visible-light photocatalysis RSC Adv. 8, 3304 (2018).

10. A Hydrogen bonding-mediated dehydrogenation in the ammonia borane combined graphene oxide systems. A. L. Kuang, M.Q, Kuang, T. W. Zhou, H. K. Yuan, H. Chen, Physica E: Low-dimensional Systems and Nanostructures, 2018, 97, 75. IF=2.221

11.Wang Biao*, Wang Xiaotian, Wang Peng, Kuang Anlong, Zhou Tingwei, Yuan Hongkuan, Chen Hong*, Bilayer MoTe2/XS2 (X=Hf,Sn,Zr) heterostructures with efficient carrier separation and light absorption for photocatalytic water splitting into hydrogen:Applied Surface Science, 544 , 148842(2021)SCI  (Impact Factor: 6.707)

12Wang Biao, Wang Xiaotian, Yuan Hongkuan, Zhou Tingwei, Chang Junli, Chen Hong*, Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction. International Journal of Hydrogen Energy, 45, 2785 (2020) SCI (Impact Factor: 5.816)

13Wang Biao, Wang Guangzhao, Yuan Hongkuan, Kuang Anlong, Chang Junli, Huang Yuhong, Chen Hong*, Strain-tunable electronic and optical properties in two dimensional GaSe/g-C3N4 van der Waals heterojunction as photocatalyst for water splitting. Physica E: Low-dimensional systems and nanostructures, 118, 113896 (2020) SCI  (Impact Factor: 3.382)

14Wang Biao, Yuan Hongkuan, Chang Junli, Chen Xiaorui, Chen Hong*, Two dimensional InSe/C2N van der Waals heterojunction as enhanced visible-light-responsible photocatalyst for water splitting. Applied Surface Science,  485, 375 (2019) SCI (Impact Factor: 6.707)

15Wang Biao, Kuang Anlong, Luo Xukai, Wang Guangzhao, Yuan Hongkuan, Chen Hong*,Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting. Applied Surface Science, 439, 374 (2018) SCI  (Impact Factor: 6.707)

16 Meng Ju, Hao Liang, Yongsheng Zhu, Yau-yuen Yeung, Hongkuan Yuan, Mingmin Zhong, Wei Dai and Cheng Lu

Insights into the Microstructures and Energy Levels of Pr3+-Doped YAlO3 Scintillating Crystals

Inorganic Chemistry, 60, 5107 (2021) SCI (Impact Factor: 5.165) Nature Index

17 Meng Ju, Yang Xiao, MingMin Zhong, Weiguo Sun, Xinxin Xia, Yau-yuen Yeung and Cheng Lu

New Theoretical Insights into the Crystal-Field Splitting and Transition Mechanism for Nd3+-Doped Y3Al5O12

ACS Applied Materials & Interfaces, 11, 10745 (2019) SCI (Impact Factor: 9.229)

18 Meng Ju, MingMin Zhong, Cheng Lu and Yau-yuen Yeung

Deciphering the Microstructure and Energy-Level Splitting of Tm3+-Doped Yttrium Aluminum Garnet

Inorganic Chemistry, 58, 1058 (2019) SCI (Impact Factor: 5.165)

19.Meng Ju, Guo-liang Sun, Xiao-yu Kuang, Cheng Lu, Yong-sheng Zhu and Yau-yuen Yeung Theoretical investigation of the electronic structure and luminescence properties for NdxY1-xAl3(BO3)4 nonlinear laser crystal Journal of Materials Chemistry C, 5, 7174 (2017) SCI (Impact Factor: 5.976)

20.Wang, G.; Tang, W.; Xie, W.; Tang, Q.; Wang, Y.; Guo, H.; Gao, P.; Dang, S.; Chang, J. Type-II CdS/PtSSe Heterostructures Used as Highly Efficient Water-Splitting Photocatalysts. Applied Surface Science 2022, 589, 152931. https://doi.org/10.1016/j.apsusc.2022.152931.

21.Wang, G.; Chang, J.; Tang, W.; Xie, W.; Ang, Y. S. 2D Materials and Heterostructures for Photocatalytic Water-Splitting: A Theoretical Perspective. Journal of Physics D: Applied Physics 2022, 55 (29), 293002. https://doi.org/10.1088/1361-6463/ac5771.

22.Wang, G.; Zhao, L.; Guo, S.-D.; Chang, J.; Wang, B.; Zhao, W.; Yuan, B.; Long, X.; Zhang, W.; Su, P. Bandgap Engineering of KTaO3 for Water-Splitting by Different Doping Strategies. International Journal of Hydrogen Energy 2021, 46 (78), 38663–38677. https://doi.org/10.1016/j.ijhydene.2021.09.085.

23.Chang, J.; Zhao, W.; Wang, G.; Ang, Y. S. Rotation Tunable Type-I/Type-II Band Alignment and Photocatalytic Performance of g-C₃N₄/InSe van Der Waals Heterostructure. physica status solidi (RRL) – Rapid Research Letters 2021, 15 (7), 2100171. https://doi.org/10.1002/pssr.202100171.

24.Chang, J.; Jiang, L.; Wang, G.; Huang, Y.; Chen, H. Theoretical Insight into the CdS/FAPbI3 Heterostructure: A Promising Visible-Light Absorber. New Journal of Chemistry 2021, 45 (9), 4393–4400. https://doi.org/10.1039/d0nj04827e.

25.Chang, J.; Jiang, L.; Wang, G.; Zhao, W.; Huang, Y.; Chen, H. Lead-Free Perovskite Compounds CsSn1−xGexI3−yBry Explored for Superior Visible-Light Absorption. Physical Chemistry Chemical Physics 2021, 23 (26), 14449–14456. https://doi.org/10.1039/d1cp00024a.

26.Chang, J.; Dong, N.; Wang, G.; Jiang, L.; Yuan, H.; Chen, H. Theoretical Insight into Two-Dimensional g-C6N6/InSe van Der Waals Heterostructure: A Promising Visible-Light Photocatalyst. Applied Surface Science 2021, 554, 149465. https://doi.org/10.1016/j.apsusc.2021.149465.

27.Wang, G.; Zhi, Y.; Xia, L.; Chang, J.; Yuan, B.; Guo, X.; Li, Y.; Xiao, S.; Yuan, H. 2D CdO‐Based Heterostructure as a Promising Visible Light Water‐Splitting Photocatalyst. physica status solidi A 2020, 1900859. https://doi.org/10.1002/pssa.201900859.

28.Wang, G.; Tang, W.; Geng, L.; Li, Y.; Wang, B.; Chang, J.; Yuan, H. Rotation Tunable Photocatalytic Properties of ZnO/GaN Heterostructures. physica status solidi (b) 2020, 257 (3), 1900663. https://doi.org/10.1002/pssb.201900663.

29.Wang, B.; Wang, X.; Yuan, H.; Zhou, T.; Chang, J.; Chen, H. Direct Z-Scheme Photocatalytic Overall Water Splitting on Two Dimensional MoSe2/SnS2 Heterojunction. International Journal of Hydrogen Energy 2020, 45 (4), 2785–2793. https://doi.org/10.1016/j.ijhydene.2019.11.178.

30.Wang, B.; Wang, G.; Yuan, H.; Kuang, A.; Chang, J.; Huang, Y.; Chen, H. Strain-Tunable Electronic and Optical Properties in Two Dimensional GaSe/g-C3N4 van Der Waals Heterojunction as Photocatalyst for Water Splitting. Physica E: Low-dimensional Systems and Nanostructures 2020, 118, 113896. https://doi.org/10.1016/j.physe.2019.113896.

31.Wang, G.; Li, Y.; Zhang, L.; Chang, J.; Li, Y.; Xia, L.; Xiao, S.; Dang, S.; Li, C. Two Dimensional ZnO/AlN Composites Used for Photocatalytic Water-Splitting: A Hybrid Density Functional Study. RSC Advances 2019, 9 (62), 36234–36239. https://doi.org/10.1039/C9RA06104E.

32.Wang, B.; Yuan, H.; Chang, J.; Chen, X.; Chen, H. Two Dimensional InSe/C2N van Der Waals Heterojunction as Enhanced Visible-Light-Responsible Photocatalyst for Water Splitting. Applied Surface Science 2019, 485, 375–380. https://doi.org/10.1016/j.apsusc.2019.03.344.

33.Chang, J.; Yuan, H.; Wang, B.; Huang, Y.; Chen, X.; Chen, H. Enhanced Stability and Optical Absorption in the Perovskite-Based Compounds MA1-xCs XPbI3-yBry. ChemPhysChem 2019, 20 (3), 489–498. https://doi.org/10.1002/cphc.201800927.

34.Chang, J.; Chen, H.; Wang, G.; Wang, B.; Chen, X.; Yuan, H. Electronic and Optical Properties of Perovskite Compounds MA1−αFAαPbI3−βXβ (X = Cl, Br) Explored for Photovoltaic Applications. RSC Advances 2019, 9 (12), 7015–7024. https://doi.org/10.1039/C8RA08189A.

35.Wang, G.; Yuan, H.; Chang, J.; Wang, B.; Kuang, A.; Chen, H. ZnO/MoX2 (X = S, Se) Composites Used for Visible Light Photocatalysis. RSC Advances 2018, 8 (20), 10828–10835. https://doi.org/10.1039/c7ra10425a.

36.Wang, B.; Luo, X.; Chang, J.; Chen, X.; Yuan, H.; Chen, H. Efficient Charge Separation and Visible-Light Response in Bilayer HfS2-Based van Der Waals Heterostructures. RSC Advances 2018, 8 (34), 18889–18895. https://doi.org/10.1039/c8ra03047b.

37.Chang, J.; Yuan, H.; Zhang, Q.; Wang, B.; Chen, X.; Chen, H. Theoretical Insights into Perovskite Compounds MAPb1-αXαI3-βYβ (X = Ge, Sn; Y = Cl, Br): An Exploration for Superior Optical Performance. The Journal of Physical Chemistry C 2018, 122 (48), 27205–27213. https://doi.org/10.1021/acs.jpcc.8b08543.

38.Chang, J.; Chen, H.; Yuan, H.; Wang, B.; Chen, X. The Mixing Effect of Organic Cations on the Structural, Electronic and Optical Properties of FAxMA1−xPbI3 Perovskites. Physical Chemistry Chemical Physics 2018, 20 (2), 941–950. https://doi.org/10.1039/C7CP06608B.

39.Wang, Peng; Jiang, Xue; Hu, Jun; Wang, Biao; Zhou, Tingwei; Yuan, Hongkuan; Zhao, Jijun ; Robust spin manipulation in 2D organometallic Kagome lattices: a first-principles study, Physical Chemistry Chemical Physics, 2020, 22(19): 11045-11052