汪志勇 教授
发布时间:2019-04-26 09:12:59

汪志勇,汉族,湖南祁阳人,教授,博士生导师,重庆市第三批学术技术带头人后备人选。曾就读于衡阳师范学院、南京师范大学和南京大学,分别获得理学学士、硕士和博士学位。历任重庆理工大学讲师、副教授、教授美国加州大学河滨分校国家公派访问学者。曾获重庆市留学人员回国创业创新支持计划创新类资助。长期从事统计物理、(软)凝聚态物理领域的理论和模拟方面的研究工作,当前主要关注复杂系统的相变理论、软物质表面与界面物理、胶体/聚合物物理、纳米离子通道、能量转换与储存、以及低维软材料计算设计与物性预测等相关赛道。已在各类SCI源刊累计发表40余篇学术论文,总引用频次1000+(Google Scholar)。承担计算物理热力学与统计物理的教学任务。

Email: zywang(at)swu.edu.cn & zywanglss(at)gmail.com


招生愿景对富有创造力的学生,课题组将给予充分的自主权利并不遗余力地予以支持;但如果未来的你跟导师一样资质平平,必须打碎夕阳,揉进月光,褪去迷茫,背上行囊,只为不负诗中的远方。为学必先为人,桃李不言,下自成蹊;课题组热枕欢迎积极、阳光、自律、且志同道合的年轻伙伴。不是每一次努力都有收获;但是,每一次收获都必须付诸努力!常怀恬淡之心,秉承张弛有度,繁忙之时需沉静,烦恼之时要超脱。Looking Back and Moving Forward……


承担的主要科研项目(PI) 


聚电解质表面吸附的分子模拟研究

重庆市自然科学基金 CSTB2022NSCQ-MSX0512, 2022.08-2025.07


离子液体界面绑定机制研究

西南大学人才引进基金 swu019021, 2019.07-2022.06


生命体系中极性逆转与同性相吸的物理机制研究

国家自然科学基金 11774041, 2018.01-2021.12


受限条件下的离子行为与嵌段共聚物共混自组装

重庆市基础科学与前沿技术研究专项重点基金 cstc2015jcyjBX0056, 2015.12-2018.12


生物界面电荷反转的计算机模拟研究

重庆市自然科学基金 cstc2012jjA00019, 2012.09-2015.08


基于分子模拟的双电层极性逆转与过度充电的物理驱动机制研究

国家自然科学基金 11104364, 2012.01-2014.12


代表性学术论文 CLICK ORCiD FOR COMPLETE LIST

[1] H.-Y. Liu and Z.-Y. Wang

Metallic Be2M (M = Al, Ga) monolayers as potential universal anodes for Li and post-Li ion batteries

Colloids and Surfaces A, 692, 133886 (2024)

[2] H.-Y. Li, B. Zhang, and Z.-Y. Wang

Conformational and static properties of tagged chains in solvents: effect of chain connectivity in solvent molecules

Soft Matter, 20, 3073-3081 (2024)

[3] H.-Y. Liu, B. Zhang, and Z.-Y. Wang

Dirac t-boron nitride monolayer as an appealing binder-free anode for alkali metal ion batteries

Langmuir, 40, 1524-1533 (2024)

[4] K. Sheng, B. Zhang, and Z.-Y. Wang

Valley polarization in a two-dimensional high-temperature semiconducting TiInTe3 honeycomb ferromagnet

Acta Materialia, 262, 119461 (2024)

[5] H.-Y. Liu and Z.-Y. Wang

Computational verification of conductive Be2Zn monolayer as a superior anode for alkali and alkaline ion batteries

Chemical Engineering Journal, 477, 147245 (2023)

[6] K. Sheng, B. Zhang, and Z.-Y. Wang

Piezoelectricity and valley polarization in a semilithiated 2H-TiTe2 monolayer with near room-temperature ferromagnetism

Physical Chemistry Chemical Physics, 25, 23738-23745 (2023)

[7] J. Peng and Z.-Y. Wang

Monolayer TiSi2P4 as a high-performance anode for Na-ion batteries

Journal of Physics: Condensed Matter (Featured Article: Cover Image), 35, 455702 (2023)

[8] J. Wen, J. Peng, B. Zhang, and Z.-Y. Wang

Theoretical determination of superior high-temperature thermoelectricity in an n-type doped 2H-ZrI2 monolayer

Nanoscale, 15, 4397-4407 (2023)

[9] K. Sheng, B. Zhang, H.-K. Yuan, and Z.-Y. Wang

Strain-engineered topological phase transitions in ferrovalley 2H-RuCl2 monolayer

Physical Review B, 105, 195312 (2022)

[10] K. Sheng, Q. Chen, H.-K. Yuan, and Z.-Y. Wang

Monolayer CeI2: An intrinsic room-temperature ferrovalley semiconductor

Physical Review B (ESI Highly Cited Paper from Sep 2022 to Dec 2023), 105, 075304 (2022)

[11] K. Sheng, H.-K. Yuan, and Z.-Y. Wang

Monolayer gadolinium halides GdX2 (X = F, Cl, Br): intrinsic ferrovalley materials with spontaneous spin and valley polarizations

Physical Chemistry Chemical Physics, 24, 3865-3874 (2022)

[12] K. Sheng, H.-K. Yuan, and Z.-Y. Wang

Intrinsic ferromagnetism in 2D h-CrC semiconductors with strong magnetic anisotropy and high Curie temperatures

Journal of Materials Chemistry C (Hot Paper by Editors’ Choice), 9, 16495-16505 (2021)

[13] Z.-Y. Wang, T. Yang, and X. Wang

Structural analysis of confined monovalent salts: Combined effects of steric hindrance, surface charge representation, and dielectric response

Electrochimica Acta, 336, 135707 (2020)

[14] Q. Duan, J. Ji, X. Hong, Y. Fu, C. Wang, K. Zhou, X. Liu, H. Yang, and Z.-Y. Wang

Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation

Solar Energy (ESI Highly Cited Paper from Mar 2021 to Dec 2022), 201, 555-560 (2020)

[15] K. Sheng, Z.-Y. Wang, H.-K. Yuan, and H. Chen

Two-dimensional hexagonal manganese carbide monolayer with intrinsic ferromagnetism and half-metallicity

New Journal of Physics, 22, 103049 (2020)

[16] T. Liao, H. Zhang, and Z.-Y. Wang

Improved Design of a Thermophotovoltaic Device

IEEE Transactions on Electron Devices, 62, 4709-4712 (2020)

[17] Z.-Y. Wang, P. Zhang, and Z. Ma

On the physics of both surface overcharging and charge reversal at heterophase interfaces

Physical Chemistry Chemical Physics, 20, 4118-4128 (2018)

[18] Z.-Y. Wang and J. Wu

Ion association at discretely-charged dielectric interfaces: Giant charge inversion

Journal of Chemical Physics (Featured Article: AIP News), 147, 024703 (2017)

[19] Z.-Y. Wang and Z. Ma

Examining the contributions of image-charge forces to charge reversal: Discrete versus continuum modeling of surface charges

Journal of Chemical Theory and Computation, 12, 2880-2888 (2016)

[20] Z.-Y. Wang

Charge reversal at a planar boundary between two dielectrics

Physical Review E (Highlights in Kaleidoscope), 93, 012605 (2016)

[21] Z.-Y. Wang

Image-induced overcharging in the weakly charged surfaces

Journal of Statistical Mechanics: Theory and Experiment, (2016), 043205

[22] Z.-Y. Wang, Z. Ma, and Y.-Q. Ma

Suppression and promotion of charge inversion in the presence of multivalent coions

Physical Review E (Rapid Communications), 92, 060303(R) (2015)

[23] Q. Liang, Q.-Y. Wu, and Z.-Y. Wang

Effect of hydrophobic mismatch on domain formation and peptide sorting in the multicomponent lipid bilayers in the presence of immobilized peptides

Journal of Chemical Physics (Featured Article: Cover Image), 141, 074702 (2014)

[24] Y.-P. Xie, Z.-Y. Wang, and Z. F. Hou

The phase stability and elastic properties of MgZn2 and Mg4Zn7 in Mg-Zn alloys

Scripta Materialia, 68, 495-498 (2013)

[25] Z.-Y. Wang and Y.-Q. Ma

Computational evidence of two driving mechanisms for overcharging in an electric double layer near the point of zero charge

Physical Review E (Brief Reports), 85, 062501 (2012)

[26] X.-W. Wang, D.-Y. Zhang, S.-Q. Tang, L.-J. Xie, Z.-Y. Wang, and L.-M. Kuang

Photonic two-qubit parity gate with tiny cross-Kerr nonlinearity

Physical Review A, 85, 052326 (2012)

[27] Z.-Y. Wang, Y.-P. Xie, Q. Liang, Z. Ma, and J. Wei

Looking deeper into the structure of mixed electric double layers near the point of zero charge

Journal of Chemical Physics, 137, 174707; 249902(E) (2012)

[28] Z.-Y. Wang and Y.-Q. Ma

A molecular simulation study on the role of ionic size and dielectric images in near-surface ion distribution far from the strong-coupling limit

Journal of Chemical Physics, 136, 234701 (2012)

[29] Z.-Y. Wang and Y.-Q. Ma

Impact of headgroup charges, ionic sizes, and dielectric images on charge inversion: A Monte Carlo simulation study

Journal of Physical Chemistry B, 114, 13386-13392 (2010)

[30] Z.-Y. Wang and Y.-Q. Ma

Insights from Monte Carlo simulations on charge inversion of planar electric double layers in mixtures of asymmetric electrolytes

Journal of Chemical Physics, 133, 064704 (2010)

[31] Z.-Y. Wang and Y.-Q. Ma

Monte Carlo determination of mixed electrolytes next to a planar dielectric interface with different surface charge distributions

Journal of Chemical Physics, 131, 244715 (2009)