贾伟尧,副教授,博士,硕士生导师,物理教学探讨编辑。2016年获得西南大学博士学位,日本新泻大学博士后。主要从事新型显示与光电感知的研究工作。近年来在ACS Appl Mater Interfaces, J. Phys. Chem. C, Appl. Phys. Lett. , Sci. Rep., Org. Electron. , Phys. Chem. Chem.Phys.,物理学报、中国科学、科学通报等国内外主流学术刊物上发表SCI论文40余篇。在西南大学学报、物理教师、物理通报、物理教学探讨和中学物理教学参考等主流教学研究期刊发表教研论文20余篇,目前主持重庆市教改类课题项目2项。主讲《力学》《理论力学》等课程。
主要研究方向:
1. 光电半导体器件,如钙钛矿太阳能电池(PSCs)、有机光电探测器件(NIR-OPDs)和有机场效应晶体管(OPTs)的器件物理及光-电-热耦合仿真
2. 钙钛矿、石墨烯等新型半导体材料的第一性原理计算(VASP和Material Studio)
3. 物理学科教学(尤其擅长物理学科教研课题研究和教研论文写作的指导)
欢迎有志从事新型显示与光电感知研究和物理学科教学研究的同学加入!
Email: wyjia@swu.edu.cn
论文与著作:
[1] Luo, L.; Zhu, H.; Yin, K.; Wu, Z.; Xu, F.; Gao, T.; Yue, Y.; Chen, J.; Feng, Q.; Yang, Y.; Jia, W*. Tuning the Electronic and Optical Properties of Graphene via Doping to Realize Nitrogen Dioxide Sensing: A Computational Study. ACS Omega 2025, 10 (1), 1486–1492.
[2] 朱洪强,徐凤霞,高田军,…贾伟尧,等. 利用磁电致发光效应研究高温环境对基于TBRb/C60结构的OLED光电性质的影响 [J/OL]. 中国科学:物理学 力学 天文学, 1-9[2025-03-30].
[3] Zhu, H.; Yin, K.; Wu, Z.; Luo, L.; Jia, W.; et. al. High-Temperature Evolution Processes of Exciplex States in the TBRb/C60 Planar-Heterojunction OLEDs via in-Situ Heating. Sci. China Mater. 2025, 68 (2), 413–420.
[4] 朱洪强; 罗磊; 吴泽邦; 尹开慧; 岳远霞; 杨英; 冯庆; 贾伟尧*. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报 2024, 73 (20), 59–65.
[5] Tang, Y.; Fu, H.; Li, N.; Hu, Y.; Chen, L.; Jia, W.; et. al. Y. Enabling Fast Photoresponse in Near‐Infrared Organic Phototransistors by Manipulating Minority Charge Trapping and Recombination. Advanced Optical Materials 2023, 11 (4), 2202008.
[6] Wu, J.; Hu, Y.; Chen, L.; Zhao, Y.; Zhang, Q.; Ji, W.; Chen, P.; Jia, W; et. al., Y. Universal Flexible Lamination Encapsulation Strategy toward Underwater-Operation Electroluminescence Devices. ACS Appl. Mater. Interfaces 2022, 14 (45), 51175–51182.
[7] Ning Y.-R.; Zhao X.; Tang X.-T.; Chen J.; Wu F.-J.; Jia W.-Y.; Chen X.-L.; Xiong Z.-H.. Investigations of microscopic mechanisms in exciplex-based devices with isomers of mCBP and CBP as donors via magneto-electroluminescence. Acta Phys. Sin. 2022, 71 (8), 087201.
[8] H.Q. Zhu, F.L. Qu, W.Y. Jia, et. al., The optical-electro-magnetic properties and exciton evolution process of Ir(ppy)(3) doped rubrene-based organic light-emitting diode in high temperature environment, Sci Sin-Phys Mech As, 51 (2021).
[9] H. Zhu, W. Jia, X. Tang, et. al., Trap-Enhanced Intersystem Crossing in Tris(8-hydroxyquinoline) Aluminum-Based Organic Light-Emitting Diodes via In Situ Heating, J. Phys. Chem. C, 124 (2020) 3218-3223.
[10] X. Tang, R. Pan, X. Zhao, W. Jia, et. al., Full Confinement of High‐Lying Triplet States to Achieve High‐Level Reverse Intersystem Crossing in Rubrene: A Strategy for Obtaining the Record‐High EQE of 16.1% with Low Efficiency Roll‐Off, Adv. Funct. Mater., (2020).
[11] X. Tang, R. Pan, J. Xu, W. Jia, et. al., Abnormal current dependence of high-level reverse intersystem crossing induced by Dexter energy transfer from hole-transporting layer, J. Mater. Chem. C, 8 (2020) 11061-11069.
[12] F. Qu, W. Jia, H. Zhu, X. et. al. , Enhanced Electroluminescence Efficiency Using Reverse Intersystem Crossing Induced by the Strong Triplet Fusion of Rubrene as a Sensitizer, J. Phys. Chem. C, 124 (2020) 9451-9459.
[13] H. Zhu, W. Jia, L. Chen, et. al., Trap-induced conversion from singlet fission to intersystem crossing via in situ heating of rubrene-based organic light-emitting diodes, J. Mater. Chem. C, 7 (2019) 553-557.
[14] W. Jia, T. Ikoma, L. Chen, et. al., Using magneto-electroluminescence as a fingerprint to identify the spin polarization and spin–orbit coupling of magnetic nanoparticle doped polymer light emitting diodes, RSC Advances, 9 (2019) 15845-15851.
[15] X. Tang, Y. Hu, W. Jia, et. al., Intersystem Crossing and Triplet Fusion in Singlet-Fission-Dominated Rubrene-Based OLEDs Under High Bias Current, ACS Appl Mater Interfaces, 10 (2018) 1948-1956.
[16] L. Chen, Y. Lei, Q. Zhang, Y. Zhang, W. Jia, et. al., Magnetic field dependence of photocurrent in thermally evaporated rubrene-based devices, Appl. Phys. Lett., 112 (2018) 153301.
[17] L. Chen, W. Jia, Z. Lan, et. al., Tuning the polarity of organic magnetic field effects in polymer light-emitting diodes by incorporating a colloidal quantum dots thin layer, Org. Electron., 55 (2018) 165-169.
[18] J. Deng, W. Jia, Y. Chen, et. al., Guest concentration, bias current, and temperature-dependent sign inversion of magneto-electroluminescence in thermally activated delayed fluorescence devices, Sci. Rep., 7 (2017) 44396.
[19] L. Chen, W. Jia, Y. Chen, et. al., Simultaneous Sign Change of Magneto-Electroluminescence and Magneto-Conductance in Polymer/Colloidal Quantum Dot Nanocomposites, J. Phys. Chem. C, 121 (2017) 8128-8135.
[20] Y. Zou, W. Jia, Q. Chen, et. al., The magneto-electroluminescence with the coexistence of reverse intersystem crossing and triplet-triplet annihilation in organic light emitting diodes, Scientia Sinica Technologica, 46 (2016) 184.
[21] Q. Zhang, L. Chen, W. Jia, et. al., Traps as interaction sites for hyperfine mixing: The origin of magnetoconductance in organic light-emitting diodes, Org. Electron., 39 (2016) 318-322.
[22] D. Yuan, Q. Chen, L. Chen, Y. Zou, P. Chen, Q. Zhang, W. Jia, et. al., Tuning the magnetoconductance from positive to negative upon the formation competition between exciton and charge-transfer states, Scientia Sinica Physica, Mechanica & Astronomica, 46 (2016) 037001.
[23] J. Xiang, Y. Chen, D. Yuan, W. Jia, et. al., Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet annihilation in organic planar heterojunction devices, Appl. Phys. Lett., 109 (2016) 103301.
[24] J. Xiang, Y. Chen, W. Jia, et. al., Realization of triplet–triplet annihilation in planar heterojunction exciplex-based organic light-emitting diodes, Org. Electron., 28 (2016) 94-99.
[25] W. Jia, Q. Chen, Y. Chen, et. al., Magneto-conductance characteristics of trapped triplet–polaron and triplet–trapped polaron interactions in anthracene-based organic light emitting diodes, Phys. Chem. Chem. Phys., 18 (2016) 30733-30739.
[26] W. Jia, Q. Chen, L. Chen, et. al., Molecular Spacing Modulated Conversion of Singlet Fission to Triplet Fusion in Rubrene-Based Organic Light-Emitting Diodes at Ambient Temperature, J. Phys. Chem. C, 120 (2016) 8380-8386.
[27] Y. Chen, W. Jia, J. Xiang, et. al., Identify triplet-charge interaction in rubrene-based diodes using magneto-conductance: Coexistence of dissociation and scattering channels, Org. Electron., 39 (2016) 207-213.
[28] Q. Chen, W. Jia, L. Chen, et. al., Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices, Sci. Rep., 6 (2016) 25331.
[29] L. Chen, Q. Chen, Y. Lei, W. Jia, et. al., In situ investigation of energy transfer in hybrid organic/colloidal quantum dot light-emitting diodes via magneto-electroluminescence, Phys. Chem. Chem. Phys., 18 (2016) 22373-22378.
[30] 邹越, 贾伟尧, 陈秋松, et. al., The influence of doping concentration and temperature on magnetic field effect of delayed fluorescence in organic light-emitting diode, Chin. Sci. Bull., 61 (2016) 1679.
[31] 邓军权,贾伟尧,陈颖冰,et. al., 热活化延迟荧光器件中的发光磁效应, 中国科学: 物理学 力学 天文学, 46 (2016) 087011.
[32] 陈颖冰, 袁德, 向杰, 陈秋松, 贾伟尧, et. al. 利用有机磁电导分析Rubrene发光器件中三重态激子解离和电子散射过程, 中国科学: 技术科学, 46 (2016) 7.
[33] C.-x. Zhao, W.-y. Jia, K.-X. Huang, et. al., Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states, Appl. Phys. Lett., 107 (2015) 023302.
[34] D. Yuan, L. Niu, Q. Chen, W. Jia, et. al., The triplet-charge annihilation in copolymer-based organic light emitting diodes: through the "Scattering Channel" or the "Dissociation Channel"?, Phys. Chem. Chem. Phys., 17 (2015) 27609-27614.
[35] D. Yuan, P. Chen, Q. Zhang, W. Jia, et. al., The spin mixing process between singlet and triplet in polymer light-emitting devices consisting of exciton and charge-transfer states, Chinese Science Bulletin (Chinese Version), 60 (2015) 3125.
[36] C. Lu, W. Jia, J. Bai, et. al., The magnetic field effects caused by three-combined mechanisms in organic light emitting diodes, Scientia Sinica Technologica, 45 (2015) 396.
[37] Y. Ling, W. Jia, Q. Zhang, et. al., Triplet-triplet annihilation process in exciplex-based organic light-emitting diodes, Chinese Science Bulletin (Chinese Version), 60 (2015) 1022.
[38] W. Jia, Q. Zhang, L. Chen, et. al., Spin–orbital coupling induced high-field decay of magneto-electroluminescence in pristine Alq3-based organic light-emitting diodes, Org. Electron., 22 (2015) 210-215.
[39] Q.-S. Chen, D. Yuan, W.-Y. Jia, et. al., Investigation of excitons fission and annihilation processes in Rubrene based devices by utilizing magneto-electroluminescence curves, Acta Physica Sinica, 64 (2015).
[40] 袁德, 陈平, 张巧明, 贾伟尧, et. al., 激子态和电荷转移态共存的聚合物发光器件中单重态与三重态之间的自旋混合过程, 科学通报, (2015) 3125-3132.
[41] 卢晨蕾, 贾伟尧, 白江文, et. al., 有机发光二极管中多种微观机制共存的有机磁效应, 中国科学: 技术科学, 4 (2015) 005.
[42] 令勇洲, 贾伟尧, 张巧明, et. al., 激基复合物发光器件中三重激发态之间的湮灭过程, 科学通报, 11 (2015) 009.
[43] 陈秋松, 贾伟尧, 陈历相, et. al., 利用磁致发光曲线研究Rubrene器件中激子分裂和湮没过程, Acta Phys. Sin., 64 (2015) 8.
[44] H. Liu, W.Y. Jia, Y. Zhang, et. al., Tuning magneto-electroluminescence in organic light emitting diodes by controlling the competition between singlet fission and triplet fusion, Synth. Met., 198 (2014) 6-9.
[45] Q. Zhang, Y. Lei, W. Jia, et. al., Modulating the competition between dissociation and spin mixing in electron–hole pairs: An investigation of ultra-small field induced magnetoconductance responses in blended devices, Org. Electron., 14 (2013) 2875-2879.
[46] L. Chen, Q. Zhang, W. Jia, et. al., Influence of BCP inserted-layer and working temperature on the sign inversion of magneto-conductance at high magnetic field in organic light-emitting diodes, Chinese Science Bulletin (Chinese Version), 58 (2013) 803.
发明专利:
[1] 一种OLED基板蒸镀设备: CN119194348A[P]. 2024-12-27
[2] 螺旋型溶液浓度光纤传感仪及溶液浓度检测装置: CN119125046A[P]. 2024-12-13
[3] 一种用于发光器件的带自清洁功能的半透明封装技术: CN116322126A[P]. 2023-06-23
[4] 一种通风隔音窗: CN116065932A[P]. 2023-05-05
[5] Ventilation soundproof window. LU503085. 2023-05-22
[6] Ein vollautomatisches NotWasserversorgungssystem. LU502751. 2023-03-06
本硕培养:
近年来,多次指导本科生和研究生发表学术论文、教改论文、获得国家发明专利和实用新型专利,指导本科生获得多项本科生创新项目和重庆市大学生物理创新比赛奖项,培养了30多名硕士(含学科教学硕士)。2024年,指导2队本科生CUPT竞赛小组,并获得西南赛区一等奖2项,国家比赛二等奖1项;指导2组本科生和1组研究生,在第七届重庆市大学生物理创新比赛中共获得3项一等奖辉煌成绩,并获得优秀指导教师称号。
教学项目:
[1] 2014-2015年,西南大学社科基金项目“基于移动互联网的远程培训平台研究”,主持;
[2] 2016-2018年,西南大学科普项目“《我们的世界》科普小说” ,主持;
[3] 2020-2022年, 西南大学教育教学改革研究项目“基于软件仿真的理论力学CAI教学模式探索” ;主持;
[4] 2022-2025年,重庆市研究生教育教学改革研究项目“理工类学术研究生的多学科交叉融合课程体系探索”(yjg223035),主持;
[5] 2024-2026年,重庆市高等教育教学改革研究项目“基础学科拔尖创新人才培养体系的改革与实践”(243047),主持。
教研论文:
[1] 陈林, 杨珍珂, 贾伟尧*. 指向主体视角差异的问题解决研究——以“复合机械中机械效率的计算”为例[J]. 物理通报, 2025(5) :48-50, 55.
[2] 谢胜, 贾伟尧*. 单摆碰撞问题中动量守恒条件的研究[J]. 中学物理教学参考, 2024, 53(28): 39-42.
[3] 崔胜喆, 贾伟尧, 朱建慧. 利用壳层定理求解地球隧道问题[J]. 物理教学探讨, 2024, 42(3): 73-76.
[4] 陈林, 谢胜, 贾伟尧*. 逆向思维链式进阶过程可视化教学研究——以“特殊方法测密度”为例[J]. 中学物理教学参考, 2024, 53(29): 18-21.
[5] 陈林, 贾伟尧*. 基于大单元视域的统一路径研究——以“电功率范围求解”为例[J]. 中学物理教学参考, 2024(第33期): 67-69.
[6] 贺梓凇, 焦梦鸽, 江宜航, 贾伟尧等. 基于智能手机传感器和phyphox软件精确测量刚体转动惯量[J]. 实验科学与技术, 2023, 21(4): 32-36.
[7] 高资程, 贾伟尧*. 基于SOLO理论的高考物理全国二卷考查层次的比较研究[J]. 物理教学探讨, 2023, 41(3): 39-41.
[8] 谭伟,杨珍珂,贾伟尧*, 利用MATLAB GUI仿真实验辅助中学物理电磁场教学, 物理教学探讨, 40 (2022) 3.
[9] 杨珍珂, 贾伟尧*. 指向科学思维发展的初中物理单元整体教学实施路径 [J]. 物理教学探讨, 2022, 40(9): 5-8.
[10] 杨珍珂, 赵建伟, 贾伟尧*, STEAM教育理念下初中物理项目式教学的实施路径及案例分析, 物理教学探讨, 39 (2021) 73-76.
[11] 杨珍珂, 贾伟尧*, 基于STEAM教育理念的初中物理课程创新与案例设计, 物理教学探讨, 36 (2018) 21-22+24.
[12] 张巧明, 李青燕, 卢晨蕾, 贾伟尧, 引入转动惯量减小重力加速度测量的系统误差, 物理通报, (2017) 75-77.
[13] 邹越, 王惠敏, 黄韵瑾, 郭庆, 贾伟尧, 科里奥利力几种常见错误认识的解析[J], 物理通报, (2016) 5-8.
[14] 唐佳静, 李佩佩, 李杨, 贾伟尧, 利用QQ家校师生群改进物理辅助教学, 物理教学探讨, 34 (2016) 25-27.
[15] 贾伟尧, 邹愉, 邹新政, 张巧明, 一种利用矩阵变换定位刚体惯量主轴的方法, 西南师范大学学报(自然科学版), 41 (2016) 173-178 .
[16] 杨珍珂, 邹愉, 李杨, 贾伟尧, 基于动态教案的物理教学实习技巧, 物理教学探讨, 32 (2014) 22+25 .
[17] 贾伟尧, 邹愉, 陈林, 杨珍珂, 智能手机“轨迹拍照”技术在随堂实验中的应用, 中学物理教学参考, 43 (2014) 47-48.
[18] 贾伟尧, 杨珍珂, 基于微信的中学物理教学互动平台设计, 物理教师, 35 (2014) 68-69 .
[19] 邹愉, 幸淘净, 贾伟尧*, 对浮力的一个认识误区的讨论, 物理教师, 34 (2013) 41-42 .
[20] 张启迪, 贾伟尧. 潮汐现象与三步教学法的应用[J]. 物理通报, 2011(12): 40-41.